05.08.2013 Views

Calculator Notes for TI-89, TI-92 Plus, and Voyage 200

Calculator Notes for TI-89, TI-92 Plus, and Voyage 200

Calculator Notes for TI-89, TI-92 Plus, and Voyage 200

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CHAPTER 13 <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>,<br />

<strong>and</strong> <strong>Voyage</strong> <strong>200</strong><br />

Note 13A • Entering e<br />

To find the number e, press [CHAR] 2:Math 5:e. To then display the value<br />

of e, in Approx mode press or in Exact or Auto mode press []. To<br />

define an exponential expression or function with base e, press [e x ]. (On a<br />

<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong> or <strong>Voyage</strong> <strong>200</strong>, press [e x 2nd<br />

ENTER<br />

♦<br />

♦<br />

2nd ].)<br />

Note 13B • Normal Graphs<br />

Follow these steps to graph a normal curve in Function mode:<br />

a. Make note of the mean, , <strong>and</strong> the st<strong>and</strong>ard deviation, , of the<br />

distribution.<br />

b. Press ♦ [Y] <strong>and</strong> define y1(1( *(2*)))*((e))^(((x)())^2). Enter<br />

the numeric values of <strong>and</strong> . Or if you calculated the values from the<br />

Stats/List Editor or the Data/Matrix Editor, you can enter the exact values<br />

as variables. To enter the variable <strong>for</strong> the mean, press 2nd [CHAR] 2:Math<br />

A:x. To enter the variable <strong>for</strong> the population st<strong>and</strong>ard deviation, x , press<br />

♦ ( ALPHA [S][x]. (On a <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong> or <strong>Voyage</strong> <strong>200</strong>, press 2nd G S X .)<br />

c. Set an appropriate window.<br />

d. Press ♦ [GRAPH].<br />

These screens show a normal curve with a mean 3.1 <strong>and</strong> st<strong>and</strong>ard<br />

deviation 0.14.<br />

[2.7, 3.5, 0.1, 0.5, 3, 0]<br />

To graph the st<strong>and</strong>ard normal distribution, follow the same procedure using<br />

mean 0 <strong>and</strong> st<strong>and</strong>ard deviation 1.<br />

Note 13C • Probabilities of Normal Distributions<br />

Calculating Ranges<br />

Use the integration comm<strong>and</strong> to calculate the area under a normal<br />

curve between two endpoints. To find the integration comm<strong>and</strong>, press<br />

[MATH] B:Calculus 2:( integrate. (If you have operating system 2.05 or<br />

2nd<br />

earlier, press 2nd [MATH] A:Calculus 2:( integrate.)<br />

(continued)<br />

76 CHAPTER 13 Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong><br />

©<strong>200</strong>4 Key Curriculum Press


Note 13C • Probabilities of Normal Distributions (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

Be<strong>for</strong>e using the comm<strong>and</strong>, first enter the equation of the normal curve into<br />

the Y Editor screen. (See Note 13B.) Then on the Home screen, enter the<br />

integration comm<strong>and</strong> in the <strong>for</strong>m ∫(y1(x),x,lower, upper).<br />

Graphing Ranges<br />

The calculator does not have a comm<strong>and</strong> that automatically draws a normal<br />

curve <strong>and</strong> shades the area under it. The best you can do is calculate the area,<br />

as explained above, <strong>and</strong> then graph a system of inequalities that shows the<br />

area as a feasible region. (Review Note 6G <strong>for</strong> help with graphing<br />

inequalities.)<br />

Your system should include these four equations:<br />

y1 the equation of your normal curve. Shade above y1.<br />

y2 0. Shade below y2.<br />

y3 1000(lowerx). Shade below y3.<br />

y4 1000(upperx). Shade above y4.<br />

[2.7, 3.5, 0.1, 0.5, 3, 0]<br />

Probabilities of Normal Distributions with the Stats/List Editor<br />

If your calculator has the Stats/List Editor application, you can use built-in<br />

functions that calculate <strong>and</strong> graph the area under a normal curve. To run the<br />

Stats/List Editor, press APPS 1:FlashApps <strong>and</strong> select Stats/List Editor.<br />

The normal cumulative distribution function, Normal Cdf, calculates the<br />

area between two endpoints. You find the Normal Cdf comm<strong>and</strong> by pressing<br />

F5 (Distr) 4:Normal Cdf. Enter the Lower Value, the Upper Value, the mean, <strong>and</strong> the<br />

st<strong>and</strong>ard deviation, <strong>and</strong> then press ENTER .<br />

Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong> CHAPTER 13 77<br />

©<strong>200</strong>4 Key Curriculum Press<br />

(continued)


Note 13C • Probabilities of Normal Distributions (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

The Shade Normal comm<strong>and</strong> graphs <strong>and</strong> calculates the area between two<br />

endpoints. You find this comm<strong>and</strong> by pressing F5 (Distr) 1:Shade 1:Shade<br />

Normal. Enter the Lower Value, the Upper Value, the mean, <strong>and</strong> the st<strong>and</strong>ard<br />

deviation, set Auto-scale to YES, <strong>and</strong> then press ENTER . (Note: Auto-scale adjusts<br />

the window to fit the normal curve. If you have already set an appropriate<br />

window, you can choose NO.)<br />

Note 13D • Creating R<strong>and</strong>om Probability Distributions<br />

You can create lists of various kinds of distributions. To create each list, you<br />

must press 2nd [MATH] 3:List 1:seq(.<br />

a. To create a uni<strong>for</strong>m distribution, use 2nd [MATH] 7:Probability 4:r<strong>and</strong>(.<br />

In this example, the comm<strong>and</strong> seq(2030r<strong>and</strong>(),x,1,<strong>200</strong>)→p1 creates a list<br />

of <strong>200</strong> values uni<strong>for</strong>mly distributed between 20 <strong>and</strong> 50.<br />

[20, 50, 2, 0, 50, 1]<br />

b. To create a normal distribution, use 2nd [MATH] 7:Probability 5:r<strong>and</strong>Norm(.<br />

In this example, the comm<strong>and</strong> seq(r<strong>and</strong>Norm(35,5),x,1,<strong>200</strong>)→p1 creates a list<br />

of <strong>200</strong> values with mean 35 <strong>and</strong> st<strong>and</strong>ard deviation 5. Almost all of the<br />

values will be between 20 <strong>and</strong> 50.<br />

[20, 50, 2, 0, 50, 1]<br />

c. To create a left-skewed distribution, use the cube root of r<strong>and</strong>(. In this<br />

example, the comm<strong>and</strong> seq(2030(r<strong>and</strong>())^(13),x,1,<strong>200</strong>)→p1 creates a<br />

left-skewed population of <strong>200</strong> values between 20 <strong>and</strong> 50.<br />

[20, 50, 2, 0, 50, 1]<br />

(continued)<br />

78 CHAPTER 13 Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong><br />

©<strong>200</strong>4 Key Curriculum Press


Note 13D • Creating R<strong>and</strong>om Probability Distributions (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

d. To create a right-skewed distribution, use the cube of r<strong>and</strong>(. In this<br />

example, the comm<strong>and</strong> seq(2030(r<strong>and</strong>())^3,x,1,<strong>200</strong>)→p1 creates a<br />

right-skewed population of <strong>200</strong> values between 20 <strong>and</strong> 50.<br />

[20, 50, 2, 0, 50, 1]<br />

Note 13E • Sampling from a Distribution<br />

Be<strong>for</strong>e starting the sampling routine, make sure that you have stored your<br />

distribution into a list p1 (see Note 13D), calculated the population mean<br />

<strong>and</strong> st<strong>and</strong>ard deviation, <strong>and</strong> graphed y1, y22x <strong>and</strong> y32x.<br />

Now, the recursive routine below will r<strong>and</strong>omly choose one value at a time<br />

from list p1 <strong>and</strong> add it to a sample, <strong>and</strong> then plot a point in the <strong>for</strong>m<br />

(number sampled, sample mean). In the routine, the variable n is the number<br />

sampled <strong>and</strong> the variable t is the sum of the data values. Hence, the routine<br />

plots the point (n, tn).<br />

a. Initialize n to 0 by pressing 0 STOÍ alpha [N] ENTER .<br />

b. Initialize t to 0 by pressing 0 STOÍ T ENTER .<br />

c. Enter this recursive routine on the Home screen:<br />

n1→n: tp1[r<strong>and</strong>(<strong>200</strong>)]→t: PtOn n, tn<br />

Find the r<strong>and</strong>( comm<strong>and</strong> by pressing 2nd [MATH] 7:Probability 4:r<strong>and</strong>(. Find<br />

the point plotting comm<strong>and</strong>, PtOn, by pressing CATALOG [P] <strong>and</strong> scrolling<br />

down to PtOn. Get the colon by pressing 2nd [:].<br />

d. Begin the sampling-<strong>and</strong>-plotting routine by pressing ENTER HOME ENTER<br />

HOME , <strong>and</strong> so on. Each time you press ENTER , you’ll see a new point<br />

plotted on the graph.<br />

Note 13F • Correlation Coefficient<br />

[0, 50, 10, 20, 20, 1]<br />

There are two ways to find a correlation coefficient, r, using your calculator.<br />

You can manually enter the calculations yourself, or you can have the<br />

calculator do the work <strong>for</strong> you.<br />

First store your bivariate data into two lists, say list w1 <strong>for</strong> the x-values <strong>and</strong><br />

list w2 <strong>for</strong> the y-values.<br />

Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong> CHAPTER 13 79<br />

©<strong>200</strong>4 Key Curriculum Press<br />

(continued)


Note 13F • Correlation Coefficient (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

Follow these steps to manually calculate r:<br />

a. Calculate the two-variable statistics that you need <strong>for</strong> the <strong>for</strong>mula by<br />

pressing 2nd [MATH] 6:Statistics 2:TwoVar ALPHA [W] 1 , ALPHA [W] 2 ENTER .<br />

The calculator calculates the statistics, but does not display them. You<br />

can display the statistics, if you like, by pressing 2nd<br />

8:ShowStat ENTER .<br />

[MATH] 6:Statistics<br />

(x x)(y y)<br />

b. Start inputting the <strong>for</strong>mula on the Home screen by entering<br />

sxsy (n 1)<br />

sum((w1. Do not press ENTER yet. To find the sum( comm<strong>and</strong>, press 2nd<br />

[MATH] 3:List 6:sum(.<br />

c. Press 2nd [CHAR] 2:Math A:x to enter x into the expression. As an<br />

alternative, you can also enter mean(w1). Notice that by pressing 2nd<br />

[CHAR] 2:Math you can also get B:y.<br />

d. Enter the rest of the <strong>for</strong>mula, ((w2y))(sx*sy*(nstat–1)). For sx <strong>and</strong> sy ,<br />

simply type sx <strong>and</strong> sy. For n, type nstat.<br />

e. Press ENTER to display the value of r.<br />

Follow these steps to have the calculator compute r:<br />

a. From the Home screen, press 2nd [MATH] 6:Statistics 3:Regressions 1:LinReg<br />

alpha [W] 1 , alpha [W] 2 ENTER .<br />

Press 2nd [MATH] 6:Statistics 8:ShowStat ENTER to display the value of r, which<br />

is called corr. The calculator shows other in<strong>for</strong>mation about the least<br />

squares line, which you’ll learn about later.<br />

You can also calculate r by choosing the LinReg comm<strong>and</strong> from the<br />

Data/Matrix Editor or the Stats/List Editor. Review Note 3D <strong>for</strong> finding a<br />

median-median line, but choose 5:LineReg <strong>for</strong> Calculation Type.<br />

80 CHAPTER 13 Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong><br />

©<strong>200</strong>4 Key Curriculum Press


Note 13G • LSL Program<br />

The program lsl allows you to adjust a line until the sum of the squares of<br />

the residuals is minimized. Follow these steps:<br />

a. Store your data into lists l1 <strong>and</strong> l2.<br />

b. Run the program.<br />

c. A short set of instructions are displayed. Arrow up or down to change the<br />

intercept of the line. Arrow left or right to change the slope of the line.<br />

Press CLEAR to reset the line <strong>and</strong> start over. Press ESC to quit the program.<br />

d. Press ENTER to see a scatter plot of your data, a line, <strong>and</strong> a physical<br />

representation of the squares of the residuals. (Note: The graphing<br />

window may not be square, so the squares may look like rectangles.) Keep<br />

adjusting the line until you have found the line with the smallest sum of<br />

the squared residuals, the value of sqr sum in the upper-left corner.<br />

Clean-Up<br />

After you quit the program, Plots 1, 2, <strong>and</strong> 3 remain on. Go to the<br />

Y Editor screen to clear them or turn them off so they do not interfere<br />

with future graphing activities.<br />

lsl()<br />

Prgm<br />

© Displays line of fit <strong>for</strong> data<br />

in l1, l2 <strong>and</strong> squares of<br />

residuals; allows adjustment<br />

© Instructions<br />

ClrIO<br />

Disp "Find line of fit"<br />

Disp "Up <strong>and</strong> dn:change intercept"<br />

Disp "Rt <strong>and</strong> left:change slope"<br />

Disp "CLEAR:reset ESC:quit"<br />

Disp ""<br />

Pause "To begin, press ENTER."<br />

PlotsOff<br />

FnOff<br />

setMode("Graph","FUNC<strong>TI</strong>ON")<br />

setMode("Angle","DEGREE")<br />

NewPlot 1,1,l1,l2,,,,3 © Plots<br />

data points<br />

ZoomData<br />

<strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong> CHAPTER 13 81<br />

©<strong>200</strong>4 Key Curriculum Press<br />

© Get stats <strong>for</strong> data<br />

dim(l1)ánum<br />

TwoVar l1,l2<br />

(num*∑xy-∑x*∑y)/(num*∑x2-∑x^2)áslope © Slope of least squares line<br />

© Store means in lists <strong>for</strong><br />

plotting<br />

mean(l1)ámeanx:mean(l2)ámeany<br />

{meanx}ál3:{meany}ál 4<br />

NewPlot 2,1,l3,l4,,,,4<br />

© Copy vertical mean, slope <strong>for</strong><br />

changing line<br />

slopeásl<br />

meanyáw<br />

© Set up lists <strong>for</strong> line of fit<br />

<strong>and</strong> residual squares<br />

seq(l1[int(x/5)+1],x,0,5*num-1)ál 5<br />

seq(l2[int(x/5)+1],x,0,5*num-1)ál 6<br />

(continued)


Note 13G • LSL Program (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

(Program: lsl continued)<br />

© Extend lists with temporary<br />

values<br />

xmaxál5[5*num+1]<br />

ymaxál6[5*num+1]<br />

augment({xmin},l5)ál 5<br />

augment({ymin},l6)ál 6<br />

Loop<br />

© Fix l5, l6 <strong>for</strong> plotting<br />

For j,1,num<br />

l1[j]ádatax:l2[j]ádatay<br />

w+sl*(datax-meanx)áz<br />

zál6[5*j-3]:zál 6[5*j]:zál6[5*j+1]<br />

datax-(datay-z)áz<br />

zál5[5*j-1]:zál 5[5*j]<br />

EndFor<br />

© Adjust window to contain<br />

residual squares<br />

max(max(l5),xmax)áxmax<br />

min(min(l5),xmin)áxmin<br />

max(max(l6),ymax)áymax<br />

min(min(l6),ymin)áymin<br />

© Make first <strong>and</strong> last of l5 <strong>and</strong><br />

l6 to draw line to edge of<br />

screen<br />

xminál 5[1]<br />

xmaxál5[5*num+2]<br />

w+sl*(xmin-meanx)ál 6[1]<br />

w+sl*(xmax-meanx)ál6[5*num+2]<br />

© Plot line of fit, with<br />

residual squares<br />

NewPlot 3,2,l5,l6,,,,5<br />

© Calculate residuals lr, sum r,<br />

sum of squares s, <strong>and</strong> plot<br />

l2-(w+sl*(l1-meanx))álr<br />

sum(lr)ár<br />

sum(lr^2)ás<br />

Note 13H • Least Squares Line<br />

(ymax-ymin)/102ác © Vertical<br />

shift amount<br />

PtText "res sum="&string<br />

(round(r,3)),xmin,ymax<br />

PtText "sqr sum="&string<br />

(round(s,3)),xmin,ymax-12*c<br />

© Show all plots<br />

DispG<br />

getKey()ák<br />

While k=0<br />

getKey()ák<br />

EndWhile<br />

If k=264 Then © ESC to quit<br />

Exit ©program<br />

ElseIf k=338 Then © up arrow;<br />

1 increment<br />

w+cáw<br />

ElseIf k=344 Then © down arrow;<br />

1 increment<br />

w-cáw<br />

ElseIf k=337 Then © left arrow;<br />

1 degree<br />

tan(tan -1 (sl)+1)ásl<br />

ElseIf k=340 Then © right arrow;<br />

1 degree<br />

tan(tan -1 (sl)-1)ásl<br />

ElseIf k=263 Then © CLEAR to<br />

reset<br />

EndIf<br />

slopeásl:meanyáw<br />

EndLoop<br />

DispHome<br />

EndPrgm<br />

The calculator can find the equation of the least squares line in the <strong>for</strong>m<br />

y ax b. To use the comm<strong>and</strong> from the Home screen, press 2nd<br />

[MATH]<br />

6:Statistics 3:Regressions 1:LinReg followed by the names of the lists <strong>for</strong> the x- <strong>and</strong><br />

y-values separated by a comma. Press ENTER to calculate the line.<br />

(continued)<br />

82 CHAPTER 13 Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong><br />

©<strong>200</strong>4 Key Curriculum Press


Note 13H • Least Squares Line (continued) <strong>TI</strong>-<strong>89</strong>/<strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>/<strong>Voyage</strong> <strong>200</strong><br />

To display the slope, y-intercept, correlation coefficient, <strong>and</strong> coefficient of<br />

determination, press 2nd [MATH] 6:Statistics 8:ShowStat ENTER .<br />

To enter the equation of the least squares line into the Y Editor, say in y1,<br />

type regeq(x)→y1(x) into the entry line on the Home screen, <strong>and</strong> press ENTER .<br />

You can also use the Data/Matrix Editor or the Stats/List Editor to calculate<br />

the least squares line. Follow the same procedure that you use to calculate a<br />

median-median line (see Note 3D), but choose 5:LinReg <strong>for</strong> Calculation Type.<br />

Note 13I • Nonlinear Regression<br />

The calculator uses a least squares approach to fit a curve to nonlinear data.<br />

It uses a combination of linearization <strong>and</strong> multivariable analysis.<br />

You can find all of these nonlinear regression comm<strong>and</strong>s in the<br />

6:Statistics 3:Regressions submenu:<br />

[MATH]<br />

2:ExpReg Exponential: y abx 3:QuadReg Quadratic: y ax2 bx c<br />

4:PwrReg Power: y axb 5:LnReg Logarithmic: y a b ln(x)<br />

7:CubicReg Cubic: y ax3 bx2 cx d<br />

8:QuartReg Quartic: y ax4 bx3 cx2 dx e<br />

9:SinReg Sinusoidal: y a sin(bx c) d<br />

A:Logistic Logistic: y c1 a ebx 2nd<br />

<br />

You enter each comm<strong>and</strong> followed by the names of the lists <strong>for</strong> the x- <strong>and</strong><br />

y-values separated by a comma.<br />

The correlation coefficient, r, is not calculated <strong>for</strong> nonlinear regressions.<br />

However, quadratic, cubic, <strong>and</strong> quartic regressions give the coefficient of<br />

determination, R 2 .Some of the nonlinear regression comm<strong>and</strong>s have special<br />

requirements:<br />

Logarithmic regression must have all x-values greater than zero.<br />

Exponential <strong>and</strong> logistic regressions must have all y-values greater than zero.<br />

Power regression must have all x- <strong>and</strong> y-values greater than zero.<br />

Quadratic <strong>and</strong> logistic regressions require at least 3 points; cubic <strong>and</strong> sinusoidal<br />

regressions require at least 4 points; <strong>and</strong> quadratic regression requires at least<br />

5points. In general, a regression comm<strong>and</strong> needs at least as many points as<br />

there are parameters in the equation.<br />

You can also use the Data/Matrix Editor or the Stats/List Editor to calculate<br />

any of these regression models. Follow the same procedure that you use to<br />

calculate a median-median line (see Note 3D), but choose the appropriate<br />

regression model <strong>for</strong> Calculation Type.<br />

Discovering Advanced Algebra <strong>Calculator</strong> <strong>Notes</strong> <strong>for</strong> the Texas Instruments <strong>TI</strong>-<strong>89</strong>, <strong>TI</strong>-<strong>92</strong> <strong>Plus</strong>, <strong>and</strong> <strong>Voyage</strong> <strong>200</strong> CHAPTER 13 83<br />

©<strong>200</strong>4 Key Curriculum Press

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!